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General approach to functional forms for the exponential
quadratic operators in coordinate–momentum space
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Singapore 119260, Republic of Singapore
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Abstract. In a recent paper (Nieto M M 1996 Quantum Semiclass. Opt.8 1061, quant-
ph/9605032), the one-dimensional squeezed and harmonic oscillator time-displacement operators
were reordered in coordinate–momentum space. In this paper, we give a general approach for
reordering the multidimensional exponential quadratic operator (EQO) in coordinate–momentum
space. An explicit computational formula is provided and applied to the single-mode and double-
mode EQO through the squeezed operator and the time-displacement operator of the harmonic
oscillator.

1. Introduction

The exponential quadratic operator (EQO) plays an important role in quantum mechanics
and quantum optics. In quantum optics, such operators occur ubiquitously in topics related
to coherent and squeezed states. Consequently, it has always been important to devise
and explore simplifying computational procedures for reducing these operators into some
manageable forms. In many applications, one usually expresses these operators in their
normal ordered forms. In a recent paper [1], it has been shown that it is also convenient to
consider the reordering of these operators in coordinate–momentum (x–p) phase space as

exp[δ] exp[αx2] exp[βx∂] exp[γ ∂2]

whereδ, α, β andγ arec-number parameters. Such reorderings, together with the following
identities [1, 2]:

exp[c∂]h(x) = h(x + c) (1)

exp[τx∂]h(x) = h(xeτ ) (2)

exp[c∂2]h(x) = 1

[4πc]1/2

∫ ∞
−∞

exp

[
− (y − x)

2

4c

]
h(y) dy (3)

facilitate the computations of the wavefunction. Moreover, as pointed out in [1], reordering
the operators inx–p space can be applied to systems [3] with time-dependent potentials
such as

V (x, t) = g(2)(t)x2+ g(1)(t)x + g(0)(t) (4)
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Reordering EQO inx–p phase space is therefore an interesting problem that deserves
further investigation. Following Wei and Norman [4], Nieto [1] has reduced the one-
dimensional EQO reordering problem inx–p space into the solution of four coupled first-
order differential equations with four unknowns. However, a direct calculation formula that
relates the EQO to its reordered form is not available. Furthermore, the results have not
been extended to then-dimensional case.

In this paper, we start within the framework ofx–p space and construct a very general
approach which is suitable to reordering arbitrary mode EQOs to its reordered form in
x–p space. In the following section, we will outline this general approach and summarize
the essential steps. In section 3, we show that this general approach yields an explicit
formula for the reordering of arbitrary one-dimensional EQO. The formula is then applied
to the one-dimensional squeezed operator and time-displacement operator of the harmonic
oscillator. The results are the same as [1], but unlike [1], we need not solve a system of
coupled differential equations. Finally, in section 4, we consider the reordering of EQO
in two dimensions and apply the same technique to the two-dimensional squeezed operator
and time-displacement operator of the coupled harmonic oscillator.

2. General approach

We denote then-dimensional coordinate and momentum operators as

x = (x1, x2, . . . , xn) ∂ = ip = (∂1, ∂2, . . . , ∂n).

The commutation rule for these operators is

[xi, ∂j ] = −δij . (5)

Without any loss of generality, we shall consider the following EQO,

U = exp

[
1

2
(x, ∂)

(
D1 F

F̃ D2

)(
x̃

∂̃

)]
(6)

whereD1, D2, F aren × n complex matrices andD1 = D̃1 andD2 = D̃2; the tilde sign
denotes the transpose of a matrix. It is convenient to introduce the symmetric matrixR as(
D1 F

F̃ D2

)
and operatorÂ ≡ 1

2(x, ∂)R

(
x̃

∂̃

)
. By direct calculations, we first note that if

L andM aren × n complex matrices andN is a symmetricn × n complex matrix, then
the following identities hold:

[ 1
2xNx̃, ∂M] = 1

2(xNx̃∂M − ∂MxNx̃) = −x ·NM (7a)

[ 1
2∂N∂̃, xM] = 1

2(∂N∂̃xM − xM∂N∂̃) = ∂ ·NM (7b)

[xL∂̃, xM] = x · LM (7c)

[xL∂̃, ∂M] = −∂ · L̃M. (7d)

From the above identities, one arrives at

[Â, (x, ∂)K] = (x, ∂)R6−1K (8)

whereK is an arbitrary 2n × 2n complex matrix and6 denotes

(
0 I

−I 0

)
with I as an

n× n identity matrix.
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Using the above formulae and commutation relations, one can recursively compute the
following relations:

[Â, (x, ∂)] = (x, ∂)R6−1 (9a)

[Â, [Â, (x, ∂)]] = (x, ∂)R6−1 · R6−1 = (x, ∂)(R6−1)2 (9b)

· · · (9c)

Applying Baker–Campbell–Hausdorff (BCH) relations [5, 6], one obtains

U(x, ∂)U−1 = (x, ∂)+ [Â, (x, ∂)] + 1

2!
[Â, [Â, (x, ∂)]] + · · · (10)

which immediately yields

U(x, ∂) U−1 = (x, ∂) · exp(R ·6−1). (11)

We next denoteT =
(
T11 T12

T21 T22

)
= exp(R ·6−1) we then find

(x, ∂)U−1 = (x, ∂) ·
(
T11 T12

T21 T22

)
(12)

where T11, T12, T21 and T22 are n × n matrices. TheTij , i, j = 1, 2 matrices are not
independent. To see this, we note that the exponential matrix, exp(R6−1), satisfies

6−1 exp(−R6−1)6 = exp(−6−1R) = exp(R̃6−1). (13)

As 6−1 = −6, the above equation (13) becomes

exp(R̃6−1)6 exp[(R6−1)) = 6 (14)

which, in our notation, can be recast as

T̃ 6T = 6. (15)

Expanding and equating the entries in equation (15), we obtain

T̃22T11− T̃12T21 = 1 (16a)

T̃21T11 = T̃11T21 (16b)

T̃22T12 = T̃12T22. (16c)

One can then easily manipulate equation (16c) to obtain the relation

T11 = T̃ −1
22 + T12T

−1
22 T21. (17)

Furthermore, by these identities, one can always have the following decomposition(
T11 T12

T21 T22

)
=
(
I W

0 I

)(
eY 0
0 e−Ỹ

)(
I 0
Z I

)
(18)

with

W = T12T22
−1 Z = T22

−1T21 Y = − ln ˜T22. (19)

Let

U1 = exp

[
1

2
(x, ∂)

(−W 0
0 0

)(
x̃

∂̃

)]
U2 = exp

[
1

2
(x, ∂)

(
0 Y

Ỹ 0

)(
x̃

∂̃

)]
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and

U3 = exp

[
1

2
(x, ∂)

(
0 0
0 Z

)(
x̃

∂̃

)]
.

Using equation (11), one has

U1(x, ∂)U
−1
1 = (x, ∂)

(
I W

0 I

)
U2(x, ∂)U

−1
2 = (x, ∂)

(
eY 0
0 e−Ỹ

)
U3(x, ∂)U

−1
3 = (x, ∂)

(
I 0
Z I

)
Thus the reordered EQO,U ′ = U1U2U3, satisfies the following relation

U ′(x, ∂)U
′−1 = (x, ∂)

(
I W

0 I

)(
eY 0
0 e−Ỹ

)(
I 0
Z I

)
= (x, ∂)

(
T11 T12

T21 T22

)
. (20)

As shown in the appendix, operatorU−1U ′ commutes with allxi andpi so thatU differs
from U ′ by a c-number factor. This factor can be shown to be unity by evaluating the
matrix element between any two states toU andU ′ respectively (see the appendix or [7]
for details). Finally, we arrive at the following formula for reordering the EQOs in an
n-dimensionalx–p space:

exp

[
1

2
(x, ∂)R

(
x̃

∂̃

)]
= e

1
2 (tr Y )e−

1
2xWx̃exY ∂̃e

1
2∂Z∂̃ . (21)

In principle, one can reorder anyn-dimensional EQO inx–p space through equation (21).
In summary, one can compute the EQO reordering inx–p phase space according to the

following fixed procedure.
(1) Given any EQO, one can rewrite it in the form of equation (6) to obtain the matrix

R, and hence the matricesD1, D2 andF .

(2) One then computes the exponential matrix exp(R · 6−1) = exp

(
F −D1

D2 −F̃
)

and

obtains the matrix

(
T11 T12

T21 T22

)
.

(3) By equation (19), one can constructW , Z andY explicitly.
(4) Finally using equation (21), one arrives at the reordered form.

3. One-dimensional application

We now apply the above results to one-dimensional problems and the general procedure
simplifies considerably in this case. For one-dimensional problems, we have

U = exp

[
1

2
(x, ∂)

(
a c

c b

)(
x

∂

)]
(22)

wherea, b andc are all arbitraryc-numbers. Straightforwardly, we easily obtain

exp(R ·6−1) = exp

(
c −a
b −c

)
=
(

coshθ + c · sinhθ/θ −a · sinhθ/θ
b · sinhθ/θ coshθ − c · sinhθ/θ

)
(23)

=
(
T11 T12

T21 T22

)
(24)
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whereθ = √c2− ab. Using equation (19), one obtains

W = −a
θ

sinhθ ·
(

coshθ − c

θ

)−1

Y = − ln
[
coshθ − c

θ
sinhθ

]
Z = b

θ
sinhθ ·

(
coshθ − c

θ

)−1
.

(25)

Substituting equation (25) into equation (21) gives

exp

[
1

2
(x, ∂)

(
a c

c b

)(
x

∂

)]
= 1√

coshθ − c
θ

· exp

[
1

2

a

θ
sinhθ

(
coshθ − c

θ

)−1
x2

]
exp

[
− ln

(
coshθ − c

θ

)
x∂
]

× exp

[
1

2

b

θ
sinhθ

(
coshθ − c

θ

)−1
∂2

]
. (26)

Equation (26) is an explicit formula for reordering any arbitrary one-dimensional EQO.
To illustrate the use of equation (26), we consider two specific examples [1]: the time-

displacment operator of the harmonic oscillator and the squeezed operator in one dimension.
For the time-displacement operator of the harmonic oscillator,

T = exp

[−it

2
(x2− ∂2)

]
.

Comparing this expression with equation (26), we obtain

a = −it b = it c = 0 θ =
√

02− (−it) · it = it.

Using equation (26), it follows

T = 1√
cost

exp

[
− i

2
tantx2

]
exp[− ln costx∂] exp

[
i

2
tant∂2

]
(27)

which is just equation (44) of [1].
The one-dimensional squeezed operator is (equation (9) of [1]):

S(z) = exp[−z1(x∂ + 1
2)+ iz2(x

2+ ∂)/2]

which can be rewritten as

U = exp

[
1

2
(x, ∂)

(
iz2 −z1

−z1 iz2

)(
x

∂

)]
. (28)

Comparing it with equation (12),

a = b = iz2 c = −z1 θ =
√
z1

2+ z2
2 = r.

Using equation (26), one easily sees that

U = 1√
coshr + z1

r
sinhr

· exp

[
iz2

2r
sinhr

(
coshr + z1

r
sinhr

)−1
x2

]

· exp
[
− ln

(
coshr + z1

r
sinhr

)
x∂
]

× exp

[
iz2

2r
sinhr

(
coshr + z1

r
sinhr

)−1
∂2

]
(29)

which is just the equations (37) of [1].
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4. Two-dimensional application

Finally, we consider the two-dimensional problem and reorder some two-dimensional EQOs
in x–p space. The two-mode squeezed operator is given by [8]

S = exp[ga1a2− g∗a1
+a2
+].

Using (ai+, ai) = 1√
2
(xi, ∂i)

(
1 1
−1 1

)
, we can rewrite this squeezed operatorS as

S = exp

[
1

2
(x, ∂)N

(
(−g∗)σ 0

0 (g)σ

)
N−1

(
x̃

∂̃

)]
(30)

whereσ =
(

0 1
1 0

)
, N = 1√

2

(
I I

−I I

)
andI is the 2× 2 identity matrix. Here, bothx

and∂ are two-dimensional (two modes) vectors. LetR be the matrix given by

R = N
(−g∗σ 0

0 gσ

)
N−1.

It is easy to see that

exp(R6−1) = N · exp

(
0 g∗σ
gσ 0

)
·N−1 (31)

=
(

cosh|g| · I + g+g∗
2|g| sinh|g| · σ g∗−g

2|g| sinh|g| · σ
g−g∗
2|g| sinh|g| · σ cosh|g| · I − g+g∗

2|g| sinh|g| · σ
)
. (32)

Following our general procedure and denotings± as g±g∗
2|g| sinh|g|, we obtain via

equation (21)

W = −s−
cosh2|g| − s2+

(
s+ cosh|g|

cosh|g| s+

)
Z = s−

cosh2|g| − s2+

(
s+ cosh|g|

cosh|g| s+

)
Y = − ln

(
cosh|g| −s+
−s+ cosh|g|

)
.

(33)

With these quantities solved, one obtains from equation (11) thex–p reordered form for
the two-modes squeezed state operator.

For the time-displacement operator of a two-dimensional coupled harmonic oscillator
with the Hamiltonian

H = 1
2(xx̃ + ∂∂̃)+ λx1x1 − 16 λ 6 1

we have the time-displacement operator

U = exp

[
1

2
(x, ∂)R

(
x̃

∂̃

)]
(34)

whereR =
(−itM 0

0 itI

)
andM =

(
1 λ

λ 1

)
. With this notation, we see that

exp(R6−1) =
(

cos(t
√
M) i

√
M sin(t

√
M)

i sin(t
√
M)√

M
cos(t
√
M)

)
(35)
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where
√
M =

(
cosω sinω
sinω cosω

)
andω = 1

2 sin−1 λ. Again using equation (9), we have


W = i

√
M tan(t

√
M)

Z = i√
M

tan(t
√
M)

Y = − ln[cos(t
√
M)].

(36)

From equation (21), thex–p reordered form for the two-dimensional time-displacement
operator of the coupled harmonic oscillator can thus be written down.

Appendix

In this appendix, we shall show that the operatorU−1U ′ commutes with the position and
momentum operators and consequentlyU differs from U ′ by a c-number which can be
shown to be unity. We first note thatU andU ′ satisfy the relation

U(x, ∂)U−1 = U ′(x, ∂)U ′−1 = (x, ∂)T .
For the position operator, since

UxU−1 = U ′xU ′−1

we have

xU−1U ′ = U−1U ′x.

This meansUU ′−1 commutes with all position operators. Similarly, one can show that
U−1U ′ commutes all momentum operators. Clearly, by Schur’s lemma, one concludes that
U−1U ′ is proportional to unity and thusU ′ = c · U .

Next we determine the value ofc. Let |f 〉 and |g〉 be the eigenstate of operatorx and
∂ with zero eigenvalue. Clearly,〈f |x = 0 and∂|g〉 = 0. Further, using the definitition of
U ′, one can immediately see that

〈f |U ′|g〉 = 〈f |U1U2U3|g〉
= 〈f |U2|g〉 since〈f |U1 = 0 andU3|g〉 = 0

= 〈f | exp(− 1
2∂Ỹ x̃)|g〉

= 〈f | exp(− 1
2{xY ∂̃ + tr Ỹ })|g〉

= exp(− 1
2 tr ln T22)〈f |g〉. (37)

We denote etR6
−1

by the following form:

etR6
−1 =

(
T11(t) T12(t)

T21(t) T22(t)

)
and proceed to calculate the matrix element value of etÂ between〈f | and |g〉 as

v(t) = 〈f |etÂ|g〉.
However, we note that∂|g〉 = 0 and〈f |x = 0, so that the derivativev′(t) is given by

v′(t) = 1
2〈f |(∂D2∂̃ + trF)etÂ|g〉. (38)
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In equation (38), we have used the identity∂F x̃ = xF̃ ∂̃ + trF . From the transformation
property of operator etÂ in equation (12) we obtain the following matrix identity:

0= 〈f |etÂ∂̃∂|g〉 (39)

= 〈f |[T̃12(t)x̃ + T̃22(t)∂̃][xT12t + ∂̃T22(t)]e
tÂ|g〉 (40)

= T̃22(t)T12(t)v(t)+ T̃22(t)〈f |∂̃∂etÂ|g〉T22(t). (41)

Without loss of generality, one can assume that det(T22(t)) 6= 0, so that

〈0f |∂̃∂etÂ|g〉 = −T12(t)T22(t)
−1v(t) (42)

which leads to

〈0|∂D2∂̃etÂ|0〉 = −v(t) tr[D2T12T22(t)
−1]. (43)

Substituting equation (43) into equation (38) we obtain

v′(t) = v(t) 1
2 tr[F̃ −D2T12T22(t)

−1]. (44)

On the other hand, one sees that the derivative of theT matrix is given by

d

dt

(
T11(t) T12(t)

T21(t) T22(t)

)
=
(
F −D1

D2 −F̃
)(

T11(t) T12(t)

T21(t) T22(t)

)
. (45)

Immediately it follows

dT22(t)

dt
= D2T12(t)− F̃ T22(t). (46)

Putting equation (46) into equation (44), one sees thatv(t) satisfies the differential equation

v′(t) = −1

2
v(t) tr

[
dT22(t)

dt
T22(t)

−1

]
which can be integrated using the conditionv(0) = 〈f |g〉 to give

v(t) = exp[− 1
2 tr ln T22(t)]〈f |g〉 (47)

Comparing equation (37) and equation (47) and remembering thatU = eA, the value of
c-number factor is unity so thatU = U ′.

References

[1] Nieto M M 1996 Quantum Semiclass. Opt.8 1061, quant-ph/9605032
[2] Nieto M M 1996 Phys. Lett.A 219 180
[3] Nieto M M and Truax D R 1997J. Math. Phys.38 84, quant-ph/9608008

Nieto M M and Truax D R 1997J. Math. Phys.38 98, quant-ph/9608009
[4] Wei J and Norman E 1963J. Math. Phys.4 575
[5] McCoy N H 1932Proc. Edinburgh Math. Soc.3 118
[6] Wilcox R M 1967J. Math. Phys.8 962
[7] Wang Xiang-bin, Yu Si-xia and Zhang Yong-de 1994J. Phys. A: Math. Gen.27 6563
[8] Walls D F and Milburn G J 1994Quantum Optics(Berlin: Springer) p 22


